Cellular Therapy and Myocardial Regeneration

Paolo Rebulla, MD
Milano Cord Blood Bank and “Franco Calori” Cell Factory
Center of Transfusion Medicine, Cellular Therapy and Cryobiology
Department of Regenerative Medicine

Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
Stem cell sources

- Bone marrow
- Mobilized peripheral blood
- Cord blood
- Adipose tissue
- Amniotic fluid
- Placenta
- Limbus
-
- Selected organs/tissues
Pubmed search, 30 Jan 2011
Stem Cells and Organ Regeneration

- 510 articles, 333 reviews

<table>
<thead>
<tr>
<th>ORGAN/TISSUE</th>
<th>CONDITIONS</th>
<th>SETTINGS</th>
<th>SPECIALTIES</th>
<th>PROFIT vs NO PROFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>Myocardial infarction</td>
<td>Laboratory</td>
<td>Orthopedics</td>
<td>NO PROFIT</td>
</tr>
<tr>
<td>Liver</td>
<td>Diabetes</td>
<td>Small animal</td>
<td>Maxillofacial surgery</td>
<td>NO PROFIT</td>
</tr>
<tr>
<td>Skin</td>
<td>Cerebral palsy</td>
<td>Large animal</td>
<td>Plastic surgery</td>
<td>NO PROFIT</td>
</tr>
<tr>
<td>Brain</td>
<td>Kidney failure</td>
<td>Human (phase I-II)</td>
<td>Internal medicine</td>
<td>NO PROFIT</td>
</tr>
<tr>
<td>Cornea</td>
<td>Liver failure</td>
<td>Human (phase III)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tooth</td>
<td>Parkinson’s disease</td>
<td>RCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner ear</td>
<td>Critical limb ischemia</td>
<td>Routine? NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>........</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartilage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervertebral disc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocal fold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 Flowchart of trial search and selection progress. Flowchart shows number of citations retrieved by individual searches and number of trials included in review. BMC, bone marrow cells; CPC, circulating progenitor cells; RCTs, randomised controlled trials.
Some non-hem stem cell experimental protocols

• **Myocardial ‘repair’?**
 - Vascular regeneration?
 - Cell fusion?
 - Is 4-6% LVEF increase clinically relevant?

• **Diabetes**
 - Studies ongoing, no firm conclusion yet

• **Cerebral palsy**
 - Large study ongoing, no firm conclusion yet
1. **SWiss Multicenter Intracoronary Stem Cells Study in Acute Myocardial Infarction (SWISS-AMI)**
 Condition: Acute Myocardial Infarction; Intervention: Procedure: intracoronary bone marrow cells infusion

2. **Trial of Hematopoietic Stem Cells in Acute Myocardial Infarction**
 Condition: Reperfused Acute Myocardial Infarction; Interventions: Other: Granulocyte Colony Stimulating Factor treatment (G-CSF); Other: Bone marrow mononuclear cells

3. **Bone Marrow Derived Adult Stem Cells for Acute Anterior Myocardial Infarction**
 Condition: Acute AMI; Interventions: Other: Bone marrow derived progenitor cells or placebo infusion; Other: Placebo infusion

4. **Use of Adult Autologous Stem Cells in Treating People Who Have Had a Heart Attack (The TIME Study)**
 Condition: Left Ventricular Dysfunction; Interventions: Biological: Adult stem cells; Biological: Placebo

5. **Treatment of Myocardial Infarction With Bone Marrow Derived Stem Cells**
 Condition: Acute Myocardial Infarction; Intervention: Procedure: Coronary catheterization and stem cell infusion

6. **Intracoronary Autologous Stem Cell Transplantation in ST Elevation Myocardial Infarction: TRACIA STUDY**
 Condition: Acute Myocardial Infarction, Intervention: Genetic: Stem Cell Transplantation

7. **Stem Cell Mobilization by G-CSF Post Myocardial Infarction to Promote Myocyte Repair**
 Condition: Myocardial Infarction; Intervention: Drug: Granulocyte Colony Stimulating Factor

8. **Prochymal® (Human Adult Stem Cells) Intravenous Infusion Following Acute Myocardial Infarction (AMI)**
 Condition: Myocardial Infarction; Interventions: Drug: Prochymal®; Drug: Placebo

9. **Study on the Efficacy and Mechanism of Cardiac Rehabilitation for Stem Cell Mobilization and Heart Failure Improvement**
 Condition: Myocardial Infarction; Intervention: Behavioral: cardiac rehabilitation

10. **Use of Adult Autologous Stem Cells in Treating People 2 to 3 Weeks After Having a Heart Attack (The Late TIME Study)**
 Condition: Left Ventricular Dysfunction; Interventions: Biological: Adult stem cells; Biological: Placebo

Other 39 registered clinical trials follow …
The ‘Franco Calori’ Cell Factory of Ospedale Maggiore Policlinico, Milan, Italy

A public hospital clean room for GMP preparation of clinical grade cellular therapy products accredited by AIFA (Italian Drug Agency) since July 2007

- Clinical ‘stem cell’ protocols developed during 2000-2011
 1. Allogeneic transplant of ex-vivo expanded cord blood
 - n=3 oncohematology patients, Dept of Pediatrics Pavia University
 2. Autologous transplant of muscular stem cells
 - n=8 DMD patients, Dept of Neurology, Milan University
 3. Intracoronary autologous transplant of CD133+ cells from bone marrow vs peripheral blood in acute myocardial infarction
 - n=15 AMI patients, Cardiology Cooperative Group
 4. Vocal Fold Repair (study of MSC in fat, in progress)
 - n=12 patients, cooperation with Otolaryngology Unit
 5. Cellular therapy for liver failure (in progress)
 - n=12 cirrhotic patients, cooperation with Bologna University
 6. Cellular therapy for Progressive Supranuclear Palsy (in progress)
 - n=20 patients, cooperation with Parkinson Center, ICP, Milan
STUDY FLOW CHART (1)

Presentation in emergency room and diagnosis of AMI day 0

Primary PTCA <24 hrs from the onset of the symptoms

absence of MB and lack of SSTEr

NO

Out of study

YES

ENROLLMENT AND INFORMED CONSENT (DAY 0 to 3)
BASELINE EVALUATION:
- 13NH$_3$ AND FDG PET
- ECHO 2D

RANDOMIZATION

GROUP A
BM harvesting

GROUP B
GCSF administration and apheresis

GROUP C
Controls: standard therapy
STUDY FLOW CHART (3)

GROUP A
BM harvesting

GROUP B
GCSF administration and apheresis

CD133+ cell
GMP production

Intracoronary administration
Assessed for eligibility (n= 355)

Enrollment n=16*

Randomization 15

Allocation n=15

Unmet inclusion criteria: * 1 denied consent ** heart transplantation

GROUP A
Allocated to intervention n=5
Received intervention n=5

GROUP B
Allocated to intervention n=5
Received intervention n=5

GROUP C
Allocated to intervention n=5
Received intervention n=5

Follow-Up

Lost to follow-up (n= 0)
Discontinued intervention (n=0) GROUP A

Lost to follow-up (n= 0)
Discontinued intervention (n= 0) GROUP B

Lost to follow-up (n= 0)
Discontinued intervention (n=1) ** GROUP C

Analysis (3, 6 and 12 months)

Analyzed: @6 n= 5 @12 n=4

Analyzed: @6 n= 4 @12 n=3

Analyzed: @6 n= 5 @12 n=4**
The ‘Franco Calori’ Cell Factory of Ospedale Maggiore Policlinico, Milan, Italy

A public hospital clean room for GMP preparation of clinical grade cellular therapy products accredited by AIFA (Italian Drug Agency) since July 2007

• Published reports from clinical ‘stem cell’ protocols developed during 2000-2011
 – Torrente et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients.
 – Castellani et al. The role of PET with 13N-ammonia and 18F-FDG in the assessment of myocardial perfusion and metabolism in patients with recent AMI and intracoronary stem cell injection.
 – Colombo et al. Myocardial blood flow and infarct size after CD 133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial.
 • J Cardiovasc Med 2011, in press
The Role of PET with 13N-Ammonia and 18F-FDG in the Assessment of Myocardial Perfusion and Metabolism in Patients with Recent AMI and Intracoronary Stem Cell Injection

Massimo Castellani¹, Alessandro Colombo², Rosaria Giordano³, Enrico Pusineri⁴, Cristina Canzi¹, Virgilio Longari¹, Emanuela Piccaluga², Simone Palatresi⁴, Luca Dellavedova¹, Davide Soligo⁵, Paolo Rebulla³, and Paolo Gerundini¹

Group A: CD 133+ cells from bone marrow
Group B: CD 133+ cells from mobilized peripheral blood
Group C: Controls

FIGURE 4. Mean percentage variation in infarct size and MBF in patients of the 3 groups during follow-up.
• Cell Transplant?
• Cell Regeneration?
• Tissue Repair?
Clinical results of cellular therapy protocols in heart disease (2001-2011)

- **Acute myocardial infarction**
 - LVEF +11.4%
 - Infarct size -34%

- **Chronic infarction/ischemic heart disease (+CABG)**
 - LVEF +10%

- **Dilated cardiomyopathy**
 - LVEF: two studies, +5.4% and +8%

Source: Strauer & Steinhoff. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart. From the methodological origin to clinical practice. J Am Coll Cardiology 2011; 58:1095-104
Cell type and possible mechanisms for myocardial regeneration

- **CD34+ & mixed BM cells**
 - Transdifferentiation? No ...
- **CD133+**
 - Neovascularization
- **MSC (from BM, AT, CB)**
 - Drugstore
Conclusions

• Further studies
 - What cell(s)?
 ➔ purified populations
 - What administration technique?
 - What patients?
 ➔ more severe
 - What time?
 ➔ 2nd week post AMI?