XV Congresso Nazionale SIdEM
XVI Corso di aggiornamento in emaferesi

Torino, 9-12 Novembre 2011

Fotoferesi extracorporea nella GvHD e markers biologici di efficacia

Paolo Perseghin

Dipartimento di Patologia Clinica
Unità di Aferesi e nuove tecnologie trasfusionali
Ospedale San Gerardo de’ Tintori
Università di Milano-Bicocca
Photopheresis or Extracorporeal Photochemotherapy (ECP)

- First applied by Edelson et al. for the treatment of CTCL (1987, NEJM) FDA approved
- Organ rejection (kidney, heart, liver, etc...)
- SLE, Systemic Sclerosis
- Rheumatoid Arthritis, Lichen planus
- Pemphigus vulgaris
- Acute and chronic GvHD
- Post-TX Bronchilitis obliterans
- Type 1 Diabetes, Crohn disease, ...
-

So far, published studies on ECP (mostly retrospective) differ in:

- Devices and methods (Therakos vs two-step technique)
- Treatment schedule
- Patient selection criteria
Yr 2000: data derived from 102 Apheresis Centers (1)
Yr 2005: preliminary data derived from 13 Apheresis centers (2)

• On-line: 3 centers, 20 pts

• Off-line: 12 centers, 173 pts

8-Methoxypsoralen (8-MOP)

- Reactive 4'-5' Bond
- Reactive 3-4 Bond
- UVA Energy
- Covalently Binds to:
 - Pyrimidine Bases
 - SMAC Protein
- Second, Independent Reactive Site
EFFECTS of 8-MOP and UVA on T CELL RESPONSE to MITOGEN
Procedure validation

Products' characteristics

MNC response to PHA stimulation (cpm)

Perseghin et al, J Clin Apher 2001
Mechanisms of ECP action

- modification of endothelial adhesion molecules with reduced T-lymphocyte migration
- modification of the expression of MHC molecules on the plasmamembrane
- alteration of the TCR of the activated cells
- shift in Th1/Th2 balance
- enhancement in the regulatory action of CD8+ T-cells activated by the antigen
- 8-MOP cross-linking with DNA leading to apoptotic death of the activated cells within 10-15 days
- generation of DCs from monocytes
- generation of clone-specific suppressor T-cells
Extracorporeal photopheresis induces apoptosis in the lymphocytes of cutaneous T-cell lymphoma and graft-versus-host disease patients

J. Bladon and P. C. Taylor Department of Haematology, Rotherham General Hospital, South Yorkshire

Lymphocytes treated by extracorporeal photopheresis can down-regulate cytokine production in untreated monocytes

John Bladon, Peter C. Taylor
Department of Haematology, Rotherham General Hospital, South Yorkshire, UK

ECP-treated lymphocytes of chronic graft-versus-host disease patients undergo apoptosis which involves both the Fas/FasL system and the Bcl-2 protein family

M. Di Renzo · P. Rubegni · P. Sbano · A. Cuccia
C. Castagnini · G. Pompella · A. L. Pasqui · P. L. Capecchi
A. Auteri · F. Laghi Pasini · M. Fimiani

Fig. 1A, B Percentage of annexin V+/PI+ lymphocytes. PBMC were isolated from peripheral blood before ECP (sample 1, A) and from ECP-treated buffy coat (sample 3, B) and cultured for 48 h. The percentage of annexin V+/PI+ lymphocytes was determined by flow cytometry after setting the gate on lymphocytes. Shown is one experiment out of ten performed

Photodermatol Photoimmunol Photomed 2005; 21: 293–302
ECP: Putative mechanism/s of action

Klassen J, Curr Oncol 2010

- Clearance of apoptotic cells by antigen-presenting cells results in differentiation of those cells into a more tolerogenic phenotype leading to decreased stimulation of effector T cells or their deletion.
- Production of anti-inflammatory cytokines, especially interleukin 10, is increased.
- Production of pro-inflammatory cytokines, especially interleukin 12 and tnfα, is decreased.

It is of considerable interest that the T- and B-cell responses to novel and recall antigens remain intact in patients treated with ECP. Thus, there appears to be a reduced risk of infections with the use of ECP as compared with the use of other immunosuppressive agents.
GvHD: an unresolved issue

- 15-20,000 allo-HSCT/yr
- La ridotta mortalità peri-HSCT ha incrementato il n° dei long-term survivor e quindi il rischio di sviluppare GvHD
- aGvHD:
 - 30-50 % matched-related HSCT
 - 50-80 % matched-URD HSCT
 - grade III: 25% survivor a 5 anni
 - grade IV: 5% survivor a 5 anni
- Terapia standard: PDN ± CSA: risposta 40-60 %... Altre terapie (MSC)

- cGvHD:
 - 30-60 % (PBSC > BM)
 - Poor prognosis: 40 % survivor a 5 anni
 - Good prognosis: 70% survivor a 5 anni
 - Terapia: PDN, CSA, Tacrolimus, MMF, etarnecpt, sirolimus, Rituximab, ECP
<table>
<thead>
<tr>
<th>Author</th>
<th>Year/journal</th>
<th>Pts (n°)</th>
<th>Diagnosis</th>
<th>Method</th>
<th>Schedule</th>
<th>Cell dose</th>
<th>Cell dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greinix</td>
<td>2000 Blood</td>
<td>21</td>
<td>aGvHD (II-IV)</td>
<td>On-line</td>
<td>2/w until improvement then 2/2-4 w</td>
<td>No</td>
<td>Response: 100%, 67 % and 12 % (gr. II, III and IV) max. after a median of 4 courses (8 ECP or 2 mts)</td>
</tr>
<tr>
<td>Kanold (review)</td>
<td>2003 Transf. Aph. Sci</td>
<td>73</td>
<td>19: aGvHD 54:cGvHD</td>
<td>Both</td>
<td>2w x3w, then 2/2w, 2/4w 3w x 3w then tapering 2w/2w until response 2w/3w x 6 mts</td>
<td>Most no</td>
<td>Response: aGvHD= 63 %, cGvHD=75%</td>
</tr>
<tr>
<td>Foss</td>
<td>2005 BMT</td>
<td>25</td>
<td>cGvHD</td>
<td>On-line</td>
<td>2w/2w in 17 pts 1w/until response in 8 pts</td>
<td>No</td>
<td>Response: 66-70%</td>
</tr>
<tr>
<td>Couriel</td>
<td>2006 Blood</td>
<td>71</td>
<td>cGvHD</td>
<td>On-line</td>
<td>2-4/w then tapering (1/w) to 2/2w</td>
<td>No</td>
<td>Response: 61 % (overall)</td>
</tr>
</tbody>
</table>
ECP schedule (2)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year/journal</th>
<th>Pts n°</th>
<th>Diagnosis</th>
<th>Method</th>
<th>Schedule</th>
<th>Cell dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garban</td>
<td>2005 Haematol</td>
<td>27</td>
<td>12:aGvHD</td>
<td>Off-line</td>
<td>2w x 3w, then according to response (1w)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15:cGvHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greinix</td>
<td>2006 Haematol</td>
<td>59</td>
<td>aGvHD</td>
<td>On-line</td>
<td>2/1-2 w, then 2/ 2-4 w</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(21 p.r)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perseghin</td>
<td>2007 Ther Apher Dial</td>
<td>25</td>
<td>cGvHD</td>
<td>Off-line</td>
<td>2w x 3w, then 2w/2w and 2w/4w</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response: aGvHD=75%, cGvHD= 87 %

Response: 82% skin, 61 % gut and liver, lower when combined

Response : 80% (maintained > 30 mts in 90% pts)
25 patients who underwent:

- Allogeneic related HSCT (n=18)
- Allogeneic unrelated HSCT (n=3)
- Haplo-identical HSCT (n=4)

who developed cGvHD refractory to conventional immunosuppressive treatment and started ECP were retrospectively analysed

Main diagnosis for HSCT: AML (8), ALL (7), CML (4), other diseases (6)

- Median age: 17 yrs (range 6-55)
- Median weight: 52 Kg (range 20-81)

- 12 patients: progressive cGvHD
- 7 patients: “de novo” cGvHD
 at a median of 5 mths from HSCT
- 6 patients had “quiescent” cGvHD
A cell dose/ECP of at least 75×10^6 MNC/Kg identified 85% of responsive patients (CR+PR)

100×10^6/MNC/Kg identified 82% of CR.

Perseghin et al. Ther Apher Dial, 2007
A multicenter prospective phase 2 randomized study of extracorporeal photopheresis for treatment of chronic graft-versus-host disease

Table 3. Total Skin Score (TSS) and corticosteroid response to ECP treatment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Week 12</th>
<th>Week 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECP, n = 48</td>
<td>Control, n = 47</td>
</tr>
<tr>
<td>Median percent change from baseline in TSS</td>
<td>−14.5</td>
<td>−8.5</td>
</tr>
<tr>
<td>> 50% reduction in corticosteroid dose, n (%)†</td>
<td>12 (25)</td>
<td>6 (12.8)</td>
</tr>
<tr>
<td>> 50% reduction in corticosteroid dose and</td>
<td>4 (8.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>> 25% improvement in TSS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% reduction in corticosteroid dose and final</td>
<td>10 (20.8)</td>
<td>3 (6.4)</td>
</tr>
<tr>
<td>corticosteroid dose of < 10 mg/day, n (%)†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Cumulative incidence of complete or partial skin response.

The results of this study suggest that ECP may have a steroid-sparing effect in the treatment of chronic GVHD, as evidenced by reduction in corticosteroids concomitant with improvement in skin disease assessed by a blinded observer.
Extracorporeal photochemotherapy in graft-versus-host disease: a longitudinal study on factors influencing the response and survival in pediatric patients

Perotti et al, Transfusion 2010

A gg+ 30 dall’inizio

50 p. aGvHD

23 p. cGvHD
Monitoring of circulating T-cell subsets: the role of T-REGs in allotrasplant and GVHD

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Identification of Treg (method)</th>
<th>Conclusions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>CD4*CD25+ T cells (cytometry)</td>
<td>GvHD is associated with high frequency of CD4*CD25+ cells within the graft.</td>
<td>[21]</td>
</tr>
<tr>
<td>40</td>
<td>CD4*CD25hi T cells (cytometry)</td>
<td>More than 100 days post-graft, patients with cGvHD have elevated numbers of CD4*CD25hi T cells.</td>
<td>[22]</td>
</tr>
<tr>
<td>54</td>
<td>CD4*CD25hi T cells (cytometry)</td>
<td>cGvHD does not correlate with the numbers of CD4*CD25hi T cells in grafted patients.</td>
<td>[23]</td>
</tr>
<tr>
<td>34</td>
<td>Foxp3 (RT-qPCR)</td>
<td>GvHD correlates with low Foxp3 expression level in PBMCs of grafted patients.</td>
<td>[24]</td>
</tr>
<tr>
<td>57</td>
<td>CD4*CD25+ T cells (cytometry)</td>
<td>Patients with cGvHD have reduced frequencies of CD4*CD25+ and Foxp3-expressing T cells. These cells are functionally suppressive in vitro.</td>
<td>[25*]</td>
</tr>
<tr>
<td>47</td>
<td>CD4*CD25hi T cells (cytometry)</td>
<td>The frequency of infused CD4*CD25hi T cells does not correlate with the risk of GvHD in a delayed leukocyte infusion setting.</td>
<td>[26]</td>
</tr>
<tr>
<td>31</td>
<td>CD4*CD25+ T cells (cytometry)</td>
<td>The number of Foxp3-expressing CD4*CD25+ T cells does not correlate with GvHD in grafted patients.</td>
<td>[27]</td>
</tr>
<tr>
<td>49</td>
<td>Foxp3+ cells (immunostaining)</td>
<td>Deficit of Foxp3+ cells in the intestine of patients with GvHD. High numbers of CD4*Foxp3+ T cells within the transplant or in the blood of grafted patients are associated with a reduced risk to develop GvHD.</td>
<td>[28**] [29**]</td>
</tr>
<tr>
<td>32</td>
<td>CD4*Foxp3+ T cells (cytometry)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Member of the forkhead transcription factor family
2. FOXP3 gene maps to chromosome Xp11.23
3. Expressed, exclusively, within the nuclei of CD4+CD25+ regulatory T cells
4. Selective marker for regulatory T cells
5. Involved in the activation, differentiation and homeostasis of T-reg
The Immunological Effects of Extracorporeal Photopheresis Unraveled: Induction of Tolerogenic Dendritic Cells In Vitro and Regulatory T Cells In Vivo

Andrea Lamioni,1 Francesco Parisi,2 Giancarlo Isacchi,3,4 Ezio Giorda,1 Silvia Di Cesare,5 Attilio Landolfo,3 Francesco Cenci,1 Gian Franco Bottazzo,1 and Rita Carsetti1,6

Transplantation, 2005

FIGURE 3. Treg cells are increased in the blood of patients treated with ECP and have a suppressive function. (A) Cells were stained with antibodies to CD4, CD3, CD69 and CD28. Dot plot shows CD25 expression of CD4+ CD3+ T cells in a representative control (left) and in patients treated either with conventional immunosuppression (CIS, middle) or ECP+CIS (right). CD69+ activated cells were excluded from analysis by electronic gating. (B) The bars show the frequency of CD4+ CD25+ Treg cells in five normal individuals (white bar) and in transplanted patients treated either with CIS (six patients, gray bar), or with additional ECP (four patients, black bar). Student’s t test was used for statistical analysis. P < 0.05 was considered significant. (C) Depletion of CD4+ CD25+ Treg cells increases T-cell proliferation in ECP-treated patients. The white bar shows the proliferation of CD4+ T cells, the grey bar the proliferation of Treg depleted CD4+ cells. Treg cells do not proliferate upon stimulation (black bar). A representative result of three independent experiments is shown. (D) CTLA-4 surface expression of sorted CD4+ T cells (thin line) and Treg cells (thick line) from an ECP-treated patient analyzed after stimulation with anti-CD3 and anti-CD28.
Figure 2. Histology and immunohistochemistry for CD4+, CD8+, and CD3+FOXP3+ T cells of representative colonic biopsies from healthy controls and patients with no GvHD, with GvHD after bone marrow transplantation, and with CMV infection
Study design

1. **Immune-phenotyping of circulating T-regs**
 - CD4-CD25 intermediate, bright (comparison with healthy donors and transplanted patients not receiving ECP)
 - GITR, CD45RO, CD62L and Fox-p3 (intracytoplasmic staining)

2. **Functional analysis on sorted T-regs:**
 - qRT-PCR for Fox-p3, IL-10, TGF-beta
 - IFN-gamma Elispot assays in allogeneic cultures
 - Trans-well experiments (cell contact inhibition)
T-reg functional analysis:
FACS sorting

- qRT-PCR for Foxp-3, TGF-beta, IL-10
- IFN-gamma Elispot for alloreactivity inhibition

CD25 neg. fraction

CD25 pos. fraction

CD25
CD62L mediates homing into peripheral lymph-nodes, where T-reg cells exert their inhibitory action towards allo-reactive T cells in organs affected by GvHD (GI tract).

Biagi et al. Transplantation, 2007
T-regs increase in ECP-responders allows immunosuppressive drug tapering

Biagi et al. Transplantation, 2007
T-reg show inhibitory capacity towards allo-reactivity

Biagi et al. Transplantation, 2007
Next step: Trigger role of Th17 Lymphocytes (IL-17 producers) in GvHD

IL-17 plays a central role in the induction of autoimmune tissue injuries and inflammation, in allograft rejection and in hypersensitivities.
Regulatory T Cells and Extracorporeal Photochemotherapy: Correlation With Clinical Response and Decreased Frequency of Proinflammatory T Cells

Iolanda Di Biaso,¹ Lucia Di Maio,¹ Cristina Bugarin,¹ Giuseppe Gaipa,¹ Erica Dander,¹ Adriana Balduzzi,¹ Matteo Parma,² Giovanna D’Amico,¹ Paolo Perseghin,³ Andrea Biondi,¹ and Ettore Biagi¹,⁴

Median age: 22 years (4-64)

Sex (M/F): 21/6

Transplantation type:
- HAPLO = 10
- MUD = 13
- RELATED = 4

GvHD:
- acute = 9
- chronic = 18

Initial therapy:
- M-PDN / CSA = 11
- M-PDN / CSA / MMF = 5
- M-PDN / CSA / MMF/ETANER/MPDN = 4
- M-PDN / CSA / MMF/GLIVEC = 3
- M-PDN / MMF = 2
- M-PDN / CSA / MMF/GLIVEC/RITUX = 1
- M-PDN/CSA/MMF/GLIVEC/RITUX/ETANER = 1

Number of ECP:
- mean 20
- range 14-29

Follow-up (from the first ECP):
- median 22 months
- range 18-26 months
%CD4+CD25+ T-reg increases during ECP administration, particularly after 6 cycles (overall analysis)

* Increase after 6 cycles was statistically significant when compared to time 0 and to control populations represented by healthy donors and GvHD-affected ECP-untreated patients
Patients responding to ECP present a marked increase of T-reg, which is not observed in ECP non-responder patients. T-reg are, as expected, Foxp3-positive.
T-regs variations in ECP-responders with acute (left) and chronic (right) GvHD
Th17-secreting cells (by Elispot), the principal responsible for GvHD, inversely correlate with % of circulating T cells

Unstimol PMA/Ionomycin

I° CYCLE ECP %Foxp3/CD4+CD25+ cells = 0%

III° CYCLE ECP %Foxp3/CD4+CD25+ cells = 0%

VII° CYCLE ECP %Foxp3/CD4+CD25+ cells = 20%

X° CYCLE ECP %Foxp3/CD4+CD25+ cells = 0%
Absence of response to ECP is correlated to more than 1-log higher secretion of IL-17 by Th17 cells, particularly evident at 3 cycles.
15 controlli
51 pazienti HSCT (full chimerism)
-19 pazienti: no GvHD
-32 pazienti: aGvHD (14), cGvHD (18)
Inverse Relationship Between IL-17$^+$ and Foxp3$^+$ T Cells in Patients Presenting GVHD

Dander et al, Transplantation, 2009
news
Proportions of immature CD19^+CD21^- B lymphocytes predict the response to extracorporeal photopheresis in patients with chronic graft-versus-host disease

Kuzmina, Greinix et al: Blood 2009

Pre-ECP

Of note, CD21^- B lymphocytes are increased in proportion in autoimmune diseases such as systemic lupus erythematosus and active cGVHD.1,10 Increased proportions of CD21^- B lymphocytes could be part of the autoimmune pathogenesis compatible with inefficient censoring of autoreactive B cells in cGVHD.9 Disrupted
Circulating B-cell activating factor level predicts clinical response of cGvHD to ECP
Whittle R and Taylor PC, Blood e-pub oct 20, 2011

Study performed in 46 pts

<table>
<thead>
<tr>
<th>Table 1. Characteristics of chronic GVHD patients and response to ECP therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response following 3 months ECP, n=46 (%)</td>
</tr>
<tr>
<td>Organ affected by cGVHD at ECP start</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Skin, n (%)</td>
</tr>
<tr>
<td>Liver, n (%)</td>
</tr>
<tr>
<td>Ocular, n (%)</td>
</tr>
<tr>
<td>Gut, n (%)</td>
</tr>
<tr>
<td>Mucous membrane, n (%)</td>
</tr>
<tr>
<td>Lungs, n (%) †</td>
</tr>
<tr>
<td>Genital, n (%)</td>
</tr>
</tbody>
</table>
Pre-ECP BAFF levels not correlate with severity in non-skin sites

CR+PR > at 3-6 mts when BAFF < 4ng in eye, lung and mucosal inv.

Pts with BAFF < 4 ng at 1 mt ahd > 50% steroid reduction than those with higher values (70 % vs 46%)

The AA postulates that “excess BAFF in ECP pts may perpetuate dysregulated B-cell homeostasis and augment T-cell associated inflammatory process.”
Decreased pro-inflammatory cytokines and increased CCR7 expression on T-lymphocyte subsets are predictive of response to extracorporeal photopheresis in patients with GvHD

Aoki et al, BJH 2011

- CCR7 receptor is implicated in naive, memory T-cell and mature DCs homing to lymph nodes
- 15 patients (1 BMT, 14 PBPCT), PDN-refractory cGvHD

CD4+CCR4+CCR7+Increase in CR to ECP
IL10 Increase in CR (anti-inflam)
IL12a and GATA3 transc. factor decreased (pro-inflam)
Plasma biomarkers in GVHD: a new era?

Sophie Paczesny, M.D., Ph.D, John E. Levine, M.D, Thomas M. Braun, Ph.D, and James L.M. Ferrara, M.D.

Elafin

A TNF-α-induced epidermal proteinase inhibitor

Elevated only in pts with cutaneous GvHD, not in those with GI involvement or in those w/o GvHD

BRIEF REPORT

Biomarkers of immune activation to screen for severe, acute GVHD

August et al, BMT, 2010

T-cell activation markers: sCD8, sIL-R, sCD40 ligand and sCD28

Inflammatory marker: sTNF-r1
Elafin is a biomarker of graft versus host disease of the skin

Sophie Paczesny¹, Thomas M Braun², John E Levine¹,³, Jason Hogan⁴, Jeffrey Crawford¹, Bryan Coffing⁵, Stephen Olsen⁵, Sung W Choi¹, Hong Wang⁴, Vitor Faca⁴, Sharon Pitteri⁴, Qing Zhang⁴, Alice Chin⁴, Carrie Kitko¹, Shin Mineishi³, Gregory Yanik¹,³, Edward Peres¹,³, David Hanauer¹, Ying Wang¹, Pavan Reddy³, Samir Hanash⁴, and James LM Ferrara¹,³,*

Sci Transl Med. 2010 January 6; 2(13):

Validated in 492 patients

Figure 2. Skin biopsies from BMT patients
Skin biopsies from BMT patients with rashes immunohistochemically stained for elafin. A) Biopsies histologically confirmed as drug hypersensitivity showed staining only in the granular cell layer (arrow). B) Biopsies histologically confirmed as GVHD showed a strong positive staining of at least 50% of the layers in epidermis. Scale bar = 50 µm, the dashed line represents the epidermal/dermal junction. C) Plasma elafin levels in biopsied patients (N=10 per group).
Decrease of CD4$^+$CD25$^+$ regulatory T cells and TGF-β at early immune reconstitution is associated to the onset and severity of graft-versus-host disease following allogeneic haematogenesis stem cell transplantation

Qing Lia, Zhimin Zhai$^{b, *}$, Xiucui Xua, Yuanyuan Shenb, Aimei Zhanga, Zimin Sunc, Huilan Liuc, Liangquan Gengc, Yiping Wangd

(b) Expression of CD4$^+$CD25$^+$ Treg cells at different groups ($\bar{x} \pm s$) \%

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>CD4$^+$CD25$^{\text{high}}$/CD4$^+$ (%)</th>
<th>CD4$^+$CD25$^+$CD127$^{\text{low}}$/CD4$^+$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health control</td>
<td>24</td>
<td>2.07±0.59</td>
<td>6.52±1.25</td>
</tr>
<tr>
<td>non-GVHD</td>
<td>20</td>
<td>3.18±1.42*</td>
<td>8.13±2.12*</td>
</tr>
<tr>
<td>aGVHD</td>
<td>24</td>
<td>1.60±0.56*▲</td>
<td>5.01±2.16*▲</td>
</tr>
<tr>
<td>cGVHD</td>
<td>12</td>
<td>1.71±0.65▲</td>
<td>6.14±2.03▲</td>
</tr>
</tbody>
</table>

*P<0.05 vs. healthy controls, ▲P<0.01 vs. no-GVHD

(c) Expression of adjusted CD4$^+$CD25$^+$ Treg cells at different patient groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>CD4$^+$CD25$^{\text{high}}$/CD4$^+$ (%)</th>
<th>CD4$^+$CD25$^+$CD127$^{\text{low}}$/CD4$^+$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-GVHD</td>
<td>20</td>
<td>3.09 (0.23)</td>
<td>8.06 (0.48)</td>
</tr>
<tr>
<td>aGVHD</td>
<td>24</td>
<td>1.65 (0.20)*</td>
<td>5.12 (0.43)*</td>
</tr>
<tr>
<td>cGVHD</td>
<td>12</td>
<td>1.74 (0.29)*▲</td>
<td>6.03 (0.62)*▲</td>
</tr>
</tbody>
</table>

*P<0.01 vs. no-GVHD, *P<0.05 vs. no-GVHD, ▲P>0.05 vs. aGVHD
The levels of serum TGF-β and TNF-α in aGVHD.

<table>
<thead>
<tr>
<th>aGVHD</th>
<th>Number</th>
<th>TGF-β (ng/ml)</th>
<th>TNF-α (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy control</td>
<td>24</td>
<td>27.31±8.04</td>
<td>1.68±0.52</td>
</tr>
<tr>
<td>Grade I</td>
<td>16</td>
<td>18.02±3.63*</td>
<td>1.85±0.54</td>
</tr>
<tr>
<td>Grade II</td>
<td>4</td>
<td>10.74±1.15**</td>
<td>2.57±0.81**</td>
</tr>
<tr>
<td>Grade III-IV</td>
<td>4</td>
<td>8.31±1.29**</td>
<td>3.26±1.13***</td>
</tr>
</tbody>
</table>

*P <0.01 vs. Healthy controls and non-GVHD group, #P <0.05 vs. Grade I aGVHD group, and ^P >0.05 vs. Grade II aGVHD group.
(a) The levels of serum TGF-β, TNF-α in cGVHD.

<table>
<thead>
<tr>
<th>cGVHD group</th>
<th>Number</th>
<th>TGF-β (ng/ml)</th>
<th>TNF-α (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy control</td>
<td>24</td>
<td>27.31±8.04</td>
<td>1.68 ± 0.52</td>
</tr>
<tr>
<td>Limited</td>
<td>8</td>
<td>18.67±4.12#</td>
<td>2.23 ± 0.39#</td>
</tr>
<tr>
<td>Extensive</td>
<td>4</td>
<td>12.84±2.28*</td>
<td>3.17 ± 1.03*</td>
</tr>
</tbody>
</table>

P<0.05 vs. healthy controls and non-GVHD group, * P<0.05 vs. healthy controls, non-GVHD, and limited cGVHD group.

(b) Correlation of TGF-β and TNF-α concentrations to the different degree of cGVHD.
Active cutaneous cGvHD, Elafin levels decreased according to clinical improvement

TNFRI persisted elevated during ECP treatment (mild liver involvement)
Patient 2 aGvHD

aGvHD w/o cutaneous involvement (mainly GI)

Increased levels of TNFRI during ECP treatment (liver involvement)
No active skin GvHD, Elafin levels always below mean HD levels.
sTNFRI decreased according to clinical improvement
•ECP is a powerful tool and that we are still learning the best ways to use it.

• It is time to set up a strong and fruitful cooperation between those centers which currently perform ECP, designing multicenter trials, which aim to ascertain the real effectiveness of ECP and the best way to apply it, asking for financial support from central national and/or European institutions to avoid any company interference.
ECP: unanswered questions

Clinical and biological issues
1) Indications
2) Patient selection and accrual
3) Treatment schedule(s)
4) Clinical response evaluation
5) Long-term treatment?
6) Mechanisms of action

Technical issues
1) Suitable devices (pediatric patients)
2) Venous accesses
3) Certification (FDA, CE, etc)
4) Procedure validation
5) 8-MOP
Acknowledgements

Clinica Pediatrica-CTMO
Università di Milano-Bicocca
C. Uderzo, MD
A. Balduzzi, MD
A. Rovelli, MD
E. Biagi, MD, PhD

Divisione Ematologia adulti-CTMO
Università di Milano-Bicocca
Prof. EM. Pogliani, MD
P. Pioltelli, MD
M. Parma, MD
E. Terruzzi, MD
D. Belotti, BSc, PhD

Centro M.Tettamanti, Clinica Pediatrica
Ospedale San Gerardo di Monza:
I. Di Biaso,
V. Leoni, MD
G. D’Amico, BSc, PhD
E. Dander, BSc, PhD
G. Renoldi, BSc
G. Gaipa, BSc, PhD
C. Bugarin, BSc
V. Rossi, LT
Prof A. Biondi, MD

Unità Aferesi e nuove tecnologie trasfusionali
G. Confalonieri, MD
E. Bruna, RN
L. Meroni, RN
E. Casarotto, LT
M. Pozzi, LT
V. Baldini, MD
M. Dassi, BSc
A. Incontri, BSc
P. Perseghin, MD

Dipartimento di medicina preventiva e tecnologie biomediche- Università di Milano-Bicocca
S. Galimberti, PhD

Thank you!